会议动态

首 页 > 学术交流网 > 会议动态 > 正文

大数据改变教育:从教育数据挖掘到学习分析技术

发布: 2017-03-20 浏览:

2017-03-06 何克抗 高校教师网络培训中心

大数据在教育中的应用

       2012年10月,美国教育部发布了题为《通过教育数据挖掘和学习分析技术来提高教与学:问题简述》(Enhancing Teaching and Learning through Educational Data Mining and Learning Analytics: An Issue Brief)的报告(以下简称为:美国教育部关于“大数据教育应用”报告),为教育中如何利用大数据指明了方向。该报告认为,大数据无处不在,教育中也是如此。主张通过教育数据挖掘、学习分析和可视化数据分析来改进自适应学习系统,实现个性化学习。并指出,大数据在教育中的应用主要有两大领域:教育数据挖掘(Educational Data Mining,简称EDM)和学习分析技术(Learning Analytics,简称LA)。

教育数据挖掘(EDM)

       教育数据挖掘(EDM)的内涵是要对学习行为和学习过程进行量化、分析和建模;EDM的目的是利用统计学、机器学习和数据挖掘等方法来分析教与学过程中所产生的数据。

       美国教育部关于“大数据教育应用”的报告还指出,EDM关注和要回答的问题有五个方面:(1)什么样的教学顺序(即学习主题顺序)对不同特点的学生最有效?(2)什么样的行为与更好的学习成绩相关?(3)什么样的学生行为指标预示了学生的满意程度、参与度和学习进步?(4)什么特点的在线学习环境能导致更好的学习成绩?(5)什么因素能够预测学生取得成功?

学习分析技术(LA)

      而学习分析技术(LA)的内涵是要利用已有的模型来认识、理解新的学习行为和过程。Siemens则把LA定义为:关于学习者以及他们的学习环境的数据测量、收集、分析和汇总呈现。并认为,LA的目的是理解和优化学习以及学习情境。按照Siemens的观点,LA的主要应用是监测和预测学生的学习成绩,及时发现潜在问题,并据此作出干预,以防止学生在某一科目的学习中产生风险。

      对LA应当关注和回答的问题,按照美国教育部关于“大数据教育应用”报告的描述,则应涉及以下五个方面:(1)什么时候学生可以进行下一个学习主题?(2)什么时候学生可能在某一门课程中落后?(3)什么时候某个学生可能存在完成不了一门课程的风险?(4)如果没有干预补救措施,学生可能得到什么样的成绩?(5)对特定学生来说,下一个最好的课程是什么?是否需要特殊的帮助?

EDM和LA如何帮助改进教学

       正如有些学者所指出的,在大数据背景下,通过EDM和LA等技术,可以帮助教师有效地改进教学。例如,教师可以查看学生在一张图片上停留的时间,判别他们在答错一道题之后有没有回头复习,统计他们在网上提问的次数、参与讨论的多少,然后在此基础上对他们的学习行为进行引导;学生学习过程所记录的鼠标点击量,也可以用来研究学生活动的轨迹、发现不同学生对不同知识点有何不同的反应?用了多少时间?哪些知识点需要重复或强调,以及哪种陈述方式或学习工具最有效。

       大数据还可以帮助教师对学生作出全面、正确的评价,而过去对学生的评价,往往依靠感觉、直觉和考试。但人的感觉中存在盲点,直觉并不完全可靠,考试也有局限。大数据凭借日常点点滴滴的信息采集,运用严密细致的逻辑推理,能客观地展现一个学生的完整形象;云端分立的数据库彼此相联,可用来进行多维度的联机分析。这样,将呈现给我们一个宏大的教育场景。可以把每个学生置于该教育场景中来进行审视与评估。

       可见,应用EDM和LA的数据分析结果,教师可以更好地了解学生,理解和观测学生的学习过程,找到最合适的教学方法和教学顺序;还可以针对不同特点的学生采用不同的教学方法与教学策略,并能及时发现问题。进行有效干预和作出全面正确的评价,从而显著提高教学的质量与效率。

  本文摘自“现代教育科学高教研究”微信号《何克抗:大数据面面观》一文